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Summary

« OSIRIS detected large-scale changes in the Hapi region

« Shallow pits in the Hapi region formed in late Dec 2014, grew to 75 x 110 x 0.5
m in the next two months

« Why did this happen?

« MIRO measured nucleus thermal emission at 1.59 mm and 0.53 mm

Temperature versus time and depth

Thermal inertia, ice abundance, extinction and scattering coefficients
We find a thermal inertia of 100-200 MKS

We find a drastic drop in water abundance prior to pit formation

- In the range 11-22% ice by mass in Oct 2014
— Perhaps as little as 2% ice by mass in Nov 2014
« Work in progress....



Context

Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
and Davidsson et al. (2018, in preparation)



A large shallow depression emerges

Dec 10, 2014. NAC 20 km: 0.35 m px". Jan 22, 2015. NAC 27km: 0.49 m px".

Credit: ESA/Rosetta/MPS for OSIRIS Team
MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA and Davidsson et al. (2018, in preparation)




Accurate illumination conditions throughout orbit

WAC image on Feb 9, 2015, Synthetic image generated with the model of
13:32:56.344 UTC Davidsson & Rickman (2014, Icarus 243, 58-77)
Shape model SHAPS version 1.5 (degraded)
Credit: ESA/Rosetta/MPS for OSIRIS Team by Jorda et al. (2016, Icarus, 277, 257-278)
MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA ’ ’ ’
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Accurate illumination conditions throughout orbit

Hapi D, shadoing and self heating, 50 kpx shape model Surface temperature, Hapi D, May 23, 2012 - Nov 10, 2018
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Thermophysms and radlatlve transfer

Temperature vs. de pth Hapi D, differ tp ints in orbit
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Modeling the upper 3.4 meters.

T=T(x) at different times during orbit.

Surface temperature, Hapi D, Feb 12, 2016
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October 2014

Q: probability model consistent with data (w=0)
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Summary

The October 2014 MIRO measurements are consistent with
30%-50% water ice by volume, or 11-22% by mass (dust/ice
mass ratio y = 3.5 - 8.1).

The November 2014 MIRO measurements are consistent with
perhaps as little as 5% water ice by volume (~2% by mass).

Throughout the period the thermal inertia is in the range 100-
200 MKS

Rapid loss of water ice (binding material, weight) just prior to pit
formation may be related to their formation
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